Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0298464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630652

RESUMO

The global population consumes more seafood from aquaculture today than from capture fisheries and although the aquaculture industry continues to grow, both seafood sectors will continue to be important to the global food supply into the future. As farming continues to expand into ocean systems, understanding how wild populations and fisheries will interact with farms will be increasingly important to informing sustainable ocean planning and management. Using a spatially explicit population and fishing model we simulate several impacts from ocean aquaculture (i.e., aggregation, protection from fishing, and impacts on fitness) to evaluate the mechanisms underlying interactions between aquaculture, wild populations and fisheries. We find that aggregation of species to farms can increase the benefits of protection from fishing that a farm provides and can have greater impacts on more mobile species. Splitting total farm area into smaller farms can benefit fishery catches, whereas larger farms can provide greater ecological benefits through conservation of wild populations. Our results provide clear lessons on how to design and co-manage expanding ocean aquaculture along with wild capture ecosystem management to benefit fisheries or conservation objectives.


Assuntos
Ecossistema , Pesqueiros , Animais , Aquicultura/métodos , Abastecimento de Alimentos , Oceanos e Mares , Conservação dos Recursos Naturais , Alimentos Marinhos
2.
Glob Chang Biol ; 30(3): e17240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511480

RESUMO

Marine protected areas (MPAs) are important conservation tools that confer ecosystem benefits by removing fishing within their borders to allow stocks to rebuild. Fishing mortality outside a traditionally fixed MPA can exert selective pressure for low movement alleles, resulting in enhanced protection. While evolving to move less may be useful for conservation presently, it could be detrimental in the face of climate change for species that need to move to track their thermal optimum. Here, we build a spatially explicit simulation model to assess the impact of movement evolution in and around static MPAs resulting from both fishing mortality and temperature-dependent natural mortality on conservation benefits across five climate scenarios: (i) linear mean temperature shift, (ii) El Niño/La Niña conditions, (iii) heat waves, (iv) heatwaves with a mean temperature shift, and (v) no climate change. While movement evolution allows populations within MPAs to survive longer, we find that over time, climate change degrades the benefits by selecting for higher movement genotypes. Resulting population declines within MPAs are faster than expected based on climate mortality alone, even within the largest MPAs. Our findings suggest that while static MPAs may conserve species for a time, other strategies, such as dynamic MPA networks or assisted migration, may also be required to effectively incorporate climate change into conservation planning.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Temperatura , Peixes , Pesqueiros
3.
Science ; 383(6679): 225-230, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207048

RESUMO

Over the past two decades, sharks have been increasingly recognized among the world's most threatened wildlife and hence have received heightened scientific and regulatory scrutiny. Yet, the effect of protective regulations on shark fishing mortality has not been evaluated at a global scale. Here we estimate that total fishing mortality increased from at least 76 to 80 million sharks between 2012 and 2019, ~25 million of which were threatened species. Mortality increased by 4% in coastal waters but decreased by 7% in pelagic fisheries, especially across the Atlantic and Western Pacific. By linking fishing mortality data to the global regulatory landscape, we show that widespread legislation designed to prevent shark finning did not reduce mortality but that regional shark fishing or retention bans had some success. These analyses, combined with expert interviews, highlight evidence-based solutions to reverse the continued overexploitation of sharks.


Assuntos
Nadadeiras de Animais , Espécies em Perigo de Extinção , Caça , Tubarões , Animais , Pesqueiros , Mortalidade
7.
iScience ; 25(1): 103646, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024583

RESUMO

Prey depletion may contribute to marine predator declines, yet the forage base required to sustain an unfished population of predatory fish at carrying capacity is unknown. We integrated demographic and physiological data within a Bayesian bioenergetic model to estimate annual consumption of a gray reef shark (Carcharhinus amblyrhynchos) population at a remote Pacific atoll (Palmyra Atoll) that are at carrying capacity. Furthermore, we estimated the proportion of the atoll's reef fish biomass production consumed by the gray reef sharks, assuming sharks either partially foraged pelagically (mean 7%), or solely within the reef environment (mean 52%). We then predicted the gray reef shark population potential of other, less remote Pacific Ocean coral reef islands, illustrating that current populations are substantially smaller than could be supported by their forage base. Our research highlights the utility of modeling how far predator population sizes are from their expected carrying capacity in informing marine conservation.

11.
Nature ; 592(7854): 397-402, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731930

RESUMO

The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.


Assuntos
Biodiversidade , Clima , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Aquecimento Global/prevenção & controle , Animais , Sequestro de Carbono , Pesqueiros , Sedimentos Geológicos/química , Atividades Humanas , Cooperação Internacional
12.
Proc Natl Acad Sci U S A ; 117(45): 28134-28139, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106411

RESUMO

Marine protected areas (MPAs) are conservation tools that are increasingly implemented, with growing national commitments for MPA expansion. Perhaps the greatest challenge to expanded use of MPAs is the perceived trade-off between protection and food production. Since MPAs can benefit both conservation and fisheries in areas experiencing overfishing and since overfishing is common in many coastal nations, we ask how MPAs can be designed specifically to improve fisheries yields. We assembled distribution, life history, and fisheries exploitation data for 1,338 commercially important stocks to derive an optimized network of MPAs globally. We show that strategically expanding the existing global MPA network to protect an additional 5% of the ocean could increase future catch by at least 20% via spillover, generating 9 to 12 million metric tons more food annually than in a business-as-usual world with no additional protection. Our results demonstrate how food provisioning can be a central driver of MPA design, offering a pathway to strategically conserve ocean areas while securing seafood for the future.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Segurança Alimentar , Alimentos Marinhos , Animais , Peixes , Humanos
14.
Proc Biol Sci ; 287(1932): 20201063, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783522

RESUMO

Animals across vertebrate taxa form social communities and often exist as fission-fusion groups. Central place foragers (CPF) may form groups from which they will predictably disperse to forage, either individually or in smaller groups, before returning to fuse with the larger group. However, the function and stability of social associations in predatory fish acting as CPFs is unknown, as individuals do not need to return to a shelter yet show fidelity to core areas. Using dynamic social networks generated from acoustic tracking data, we document spatially structured sociality in CPF grey reef sharks at a Pacific Ocean atoll. We show that sharks form stable social groups over multiyear periods, with some dyadic associations consistent for up to 4 years. Groups primarily formed during the day, increasing in size throughout the morning before sharks dispersed from the reef at night. Our simulations suggest that multiple individuals sharing a central place and using social information while foraging (i.e. local enhancement) will outperform non-CPF social foragers. We show multiyear social stability in sharks and suggest that social foraging with information transfer could provide a generalizable mechanism for the emergence of sociality with group central place foraging.


Assuntos
Tubarões/fisiologia , Comportamento Social , Acústica , Animais , Recifes de Corais , Ecossistema , Oceano Pacífico
15.
Nature ; 583(7818): 801-806, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699418

RESUMO

Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Recifes de Corais , Ecossistema , Pesqueiros/economia , Pesqueiros/estatística & dados numéricos , Tubarões/fisiologia , Animais , Mapeamento Geográfico , Densidade Demográfica , Fatores Socioeconômicos
16.
Oecologia ; 193(2): 371-376, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32500233

RESUMO

Behavioral interactions such as dominance are critical components of animal social lives, competitive abilities, and resulting distribution patterns with coexisting species. Strong interference competition can drive habitat separation, but less is known of the role of interference if agonistic interactions are weak. While most theoretical models assume interference abilities to be constant in an environment, few consider that the extent of interference can vary by habitat and change model predictions. Using baited underwater cameras, we show a consistent dominance status between two sympatric reef sharks at an uninhabited Pacific atoll. Blacktip reef shark (Carcharhinus melanopterus) and gray reef shark (Carcharhinus amblyrhyncos) relative abundance showed an inverse relationship to each other but the strength of this relationship varied by habitat. Reef shark relative abundance declined more rapidly in the presence of heterospecifics on forereef habitats as opposed to backreefs. In all habitats, gray reef sharks were more likely to bite bait cages than blacktips when both species were present, and appeared to be the dominant species. Intraspecific interactions were also apparent, with individual willingness to bite bait decreasing as the number of conspecifics increased. Gray reef sharks may exert differential control over blacktip foraging success in different habitats. Habitat-specific behavioral interactions may partially explain patterns of spatial separation between competing species where interference is weak.


Assuntos
Ecossistema , Tubarões , Animais
18.
Mov Ecol ; 6: 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951206

RESUMO

BACKGROUND: Central place foragers (CPF) rest within a central place, and theory predicts that distance of patches from this central place sets the outer limits of the foraging arena. Many marine ectothermic predators behave like CPF animals, but never stop swimming, suggesting that predators will incur 'travelling' costs while resting. Currently, it is unknown how these CPF predators behave or how modulation of behavior contributes to daily energy budgets. We combine acoustic telemetry, multi-sensor loggers, and hidden Markov models (HMMs) to generate 'activity seascapes', which combine space use with patterns of activity, for reef sharks (blacktip reef and grey reef sharks) at an unfished Pacific atoll. RESULTS: Sharks of both species occupied a central place during the day within deeper, cooler water where they were less active, and became more active over a larger area at night in shallower water. However, video cameras on two grey reef sharks revealed foraging attempts/success occurring throughout the day, and that multiple sharks were refuging in common areas. A simple bioenergetics model for grey reef sharks predicted that diel changes in energy expenditure are primarily driven by changes in swim speed and not body temperature. CONCLUSIONS: We provide a new method for simultaneously visualizing diel space use and behavior in marine predators, which does not require the simultaneous measure of both from each animal. We show that blacktip and grey reef sharks behave as CPFs, with diel changes in activity, horizontal and vertical space use. However, aspects of their foraging behavior may differ from other predictions of traditional CPF models. In particular, for species that never stop swimming, patch foraging times may be unrelated to patch travel distance.

19.
Proc Biol Sci ; 285(1875)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29563260

RESUMO

Animal movements can facilitate important ecological processes, and wide-ranging marine predators, such as sharks, potentially contribute significantly towards nutrient transfer between habitats. We applied network theory to 4 years of acoustic telemetry data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra, an unfished atoll, to assess their potential role in nutrient dynamics throughout this remote ecosystem. We evaluated the dynamics of habitat connectivity and used network metrics to quantify shark-mediated nutrient distribution. Predator movements were consistent within year, but differed between years and by sex. Females used higher numbers of routes throughout the system, distributing nutrients over a larger proportion of the atoll. Extrapolations of tagged sharks to the population level suggest that prey consumption and subsequent egestion leads to the heterogeneous deposition of 94.5 kg d-1 of nitrogen around the atoll, with approximately 86% of this probably derived from pelagic resources. These results suggest that sharks may contribute substantially to nutrient transfer from offshore waters to near-shore reefs, subsidies that are important for coral reef health.


Assuntos
Migração Animal , Recifes de Corais , Ciclo do Nitrogênio , Nutrientes , Comportamento Predatório , Tubarões , Acústica , Animais , Ecossistema , Feminino , Masculino , Densidade Demográfica , Água do Mar , Fatores Sexuais , Telemetria , Fatores de Tempo
20.
PLoS One ; 12(2): e0172370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28207874

RESUMO

For broadly distributed, often overexploited species such as elasmobranchs (sharks and rays), conservation management would benefit from understanding how life history traits change in response to local environmental and ecological factors. However, fishing obfuscates this objective by causing complex and often mixed effects on the life histories of target species. Disentangling the many drivers of life history variability requires knowledge of elasmobranch populations in the absence of fishing, which is rarely available. Here, we describe the growth, maximum size, sex ratios, size at maturity, and offer a direct estimate of survival of an unfished population of grey reef sharks (Carcharhinus amblyrhynchos) using data from an eight year tag-recapture study. We then synthesized published information on the life history of C. amblyrhynchos from across its geographic range, and for the first time, we attempted to disentangle the contribution of fishing from geographic variation in an elasmobranch species. For Palmyra's unfished C. amblyrhynchos population, the von Bertalanffy growth function (VBGF) growth coefficient k was 0.05 and asymptotic length L∞ was 163.3 cm total length (TL). Maximum size was 175.5 cm TL from a female shark, length at maturity was estimated at 116.7-123.2 cm TL for male sharks, maximum lifespan estimated from VBGF parameters was 18.1 years for both sexes combined, and annual survival was 0.74 year-1. Consistent with findings from studies on other elasmobranch species, we found significant intraspecific variability in reported life history traits of C. amblyrhynchos. However, contrary to what others have reported, we did not find consistent patterns in life history variability as a function of biogeography or fishing. Ultimately, the substantial, but not yet predictable variability in life history traits observed for C. amblyrhynchos across its geographic range suggests that regional management may be necessary to set sustainable harvest targets and to recover this and other shark species globally.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Estágios do Ciclo de Vida/fisiologia , Tubarões/crescimento & desenvolvimento , Animais , Feminino , Masculino , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...